|
Data defines the model by dint of genetic programming, producing the best decile table.
|
|
SAS Code for Ranking Predictors Bruce Ratner, PhD |
|

data IN; input x1-x5 3.1; cards; 0.1 0.7 9.1 0.3 0.2 0.0 0.1 2.2 0.7 0.8 0.1 0.2 1.7 0.4 0.5 0.1 0.4 1.8 0.2 0.2 0.1 0.6 4.6 0.8 0.6 0.0 0.2 0.2 1.0 0.2 0.2 0.0 1.0 1.0 0.4 0.1 0.4 1.9 0.7 0.1 0.0 0.8 0.0 0.2 0.3 0.0 0.6 3.3 0.2 0.9 ; run;
proc corr data=IN rank outp=out noprint; with x5; var x1-x4; run;
data out1; set out; if _TYPE_='MEAN' then delete; if _TYPE_='STD' then delete; drop _NAME_; run; proc transpose data=out1 out=out2 (rename=( _1=n _2=CORR_X5 ) ) prefix=_; run;
data out2; set out2; abs_corr=abs(corr_X5); PREDICTOR=_NAME_; run;
data out3; set out2; if n ge 0 and abs_corr ge .0; run;
proc sort data=out3;by descending abs_corr; run;
data out3; set out3; rank=_n_; run;
proc print data=out3 noobs; var rank PREDICTOR CORR_X5; run;
|
For more information about this article, call Bruce Ratner at 516.791.3544 or 1 800 DM STAT-1; or e-mail at br@dmstat1.com. |
Sign-up for a free GenIQ webcast: Click here. |
|
|