Data defines the model by dint of genetic programming, producing the best decile table.


Demand Forecasting for Retail: A Genetic Approach
Bruce Ratner, Ph.D.  

Accurate demand forecasting is essential for retailers to minimize the risk of stores running out of a product, or not having enough of a popular brand, color or style. Preseason and in-season forecast errors account for 20 to 25 percent of losses in sales. Traditional demand forecasting methods for all stock-keeping units (SKUs) across all stores and all geographies have an inherent weakness of no ability to data mine the volumes of time-series data at the SKU-level. The purpose of this article is to present a machine learning approach – the GenIQ Model© – for demand forecasting that has demonstrated superior results compared to the traditional techniques.

For more information about this article, call me at 516.791.3544, or e-mail, br@dmstat1.com.
My publisher owns the copyright of the article, about which this abstract addresses. The article will appear in my forthcoming book.
My publisher has granted me permission to discuss orally the article's content, but by no means provide an outline, a draft or proof-ready of the article.


Sign-up for a free GenIQ webcast: Click here.